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Calibrating and editing

s CALIBRATION: Removal of
Instrumental factors In the
measurements

m Every physicist has to calibrate the
Instrument of measure being used

m EDITION: no data are better than
bad data
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Calibration - why? (i)

m Synthesis radio telescopes are not
perfect (surface accuracy, receiver
noise, etc.)

m Technical devices with different
processes involved (frequency
conversion, digital sampling, etc.)

m Control during the observation
occaslionally fails: calibration or
edition of the data
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Calibration - why? (ii)

m Scheduling and observing errors do
occur (wrong source positions,
slewing times different than
expected, etc.)

m Atmospheric and space weather
(lonosphere) conditions are not ideal

 RFI
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Calibration methods

m Direct calibration:

= Some parameters of the observations are
known (geometry of the interferometer)

= VLA: amplitude stability over 1%
= VLBI: impossible

m Calibrator sources In the sky:
= Calibration observing well-known objects
= Monitoring of phase: phase-referencing

= Monitoring of gain: determination of
amplitudes

m Self-calibration
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|nstrumental effects,
stable with time

m Antenna position coordinates:
geodetic values (ITRF)

m Antenna pointing corrections:
pointing model elaborated at the
telescopes

m Zero-point setting of instrumental
delays: known by GPS values or
another methods
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Stable effects during the

observation

# Dry component of the atmospheric
delay: meteorological values

m Antenna gain as a function of
elevation: gain curves determined at
the telescopes

s Shadowing of antennas by close
ones: at close elements (VLA),
known at the scheduling
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Variable effects during

the observation

m Variations at the system
temperatures: direct measurements
and recording of the data

m Phase variations in the local
osclillator: to be tracked

m Wet component of the atmospheric
delay: determined with
meteorological measurements, WVR
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What do we want and
what do we get

= We want to obtain the visibility function,
which has to be inverted to obtain the
brightness distribution:

V (u,v) = I | (x,y) e " ™dx dy

= We obtain the correlation of the electric
field (voltage) sampled at pairs of
telescopes (baselines Ij)

V; (t) = <Xi (t)eiﬂcomp .X’Jf (t)ei¢f°mp>

t
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The measured signal

= The net signal delivered by antenna i, x;(t), IS a
combination of the desired signal, s;(t,X,y),
corrupted by a factor Ji(t,x,y) and integrated over
the sky, and noise, n;(t):

X () = [ 3,(t, X, y)s, (t, x, y) dxdy +n, (1)

= 5;(t) +n; (1)
s J.(t,x,y) Is the factor to be calibrated, it is
antenna-based

@ Sometimes, the effects contained In this term are
Irreversible and the data have to be edited
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Correlation of signals

= The noise doesn’t correlate:
<xi-x]f>:<(si’+ni)-(s’j+nj)*>
- <si’-s}*>+<si’ : n’;>+<ni -s’j*>+<ni nj>
-(5-57)

=([3:®)s,(0) didm - [ 3} ()5} ) llcim )
_ <j3i(t)J}*(t)s,i (t)s (t) dldm>

m Even If n>> s;, the correlation
Isolates the desired signals
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Calibration segquence
(signal path)
m Faraday rotation
m Tropospheric effects
m Parallactic angle
® Antenna voltage pattern
m Polarization leakage

m Electronic gain
m Bandpass response
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lonospheric Faraday
Rotation

m The ionosphere Is birefringent, and one
hand of the circular polarization is delayed
wrt the other, introducing a phase shift:

A¢ =0.15 ZZIBHneds deg

Aincm, ndsin10*cm™, B, in G

= Rotates the linear polarization position
angle

= Important at long wavelengths, at sunrise
or sunset, and at a maximum of solar
activity
m Example:
TEC = [n,ds ~10“cm?; B, ~1G; A = 20cm — Ag ~ 60
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Troposphere

m Polarization-independent
s Amplitude effect: opacity
m Phase effect: refraction

m Effect: 2m (/ns) excess path length
at zenith compared to vacuum

m Important at high frequencies, where
water vapour absorbs and emits

m Correction: water vapor radiometer,
frequency switching?
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Parallactic angle

= Orientation of receiver with respect to the
field of view

m Constant for equatorial telescopes
= Variable for alt-az
cos(l)sin(h(t)) j

sin(l)cos(5)—cos(I)sin(5)cos(h(t))
| = latitude, h(t) = hour angle, 6 =declination

()= arctan(

= Rotates the position angle of linearly
polarized radiation
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Antenna voltage pattern

s Antennas have a direction-dependent
gain
m Important for wide-field mapping

(region of sky comparable or larger
than A/D

m Important at low frequencies
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Polarization leakage

m Orthogonal polarizations are not
completely isolated

m Feeds have a value of d of a few percent
or less

m Freqguency-dependent

m For RCP/LCP systems, the total intensity
Image Is affected as —dQ, dU (important
only for high dynamic range imaging), and
the linear polarization imaging Is affected
as —dl (very important)
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Electronic gain (1)

® Includes most of the amplitude and
phase effects introduced by the
electronics: amplifiers, mixers,
quantizers, digitizers

m Dominates all the other effects

m Causes the scaling from engineering
to radio astronomical units (Jy)

m Excludes frequency-dependent
effects

07/02/2009 Eduardo Ros — Multiwavelength School 18



Electronic gain (i)

m Flux density observed for a given
baseline:

m Ajjis the measured visibility amplitude
(raw correlation coefficient)

= Digitization losses: b
m Ki are the antenna sensitivities (K/Jy)

m [si are the system temperatures in K
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Electronic gain (i)

m It Is Instructive to express the system
temperature in terms of the system
equivalent flux density, SEFD:

m Examples at 5GHz:
= Jodrell Bank, 26m, SEFD=366 Jy
s Effelsberg, 100m, SEFD=39 Jy
= Noto, 32m, SEFD=220 Jy
= VLBA antenna, 25m, SEFD=300 Jy
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Electronic gain (iv)

m Sensitivity of an interferometer:

1 [SEFD -SEFD.
AS, == [ ———
775 2A‘//Z-B.CC

m Electronic losses s
m Ay IS the observing bandwidth
s Accumulation time tacc
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Bandpass response

m Freguency-antenna electronics

m The filters used to select the
frequency passbands are not square

m Typically normalized
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More effects...

m Errors in the geometric and the clock
models, affecting the phase: solved by
FRINGE-FITTING

m Baseline-based errors not included into
antenna-based factors
= Correlators are designed to prevent that
= Averaging in time and frequency
= Correlated noise (RFI)
= Indistinguishable from source structure effects
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Planning for good calibration:
values provided by the observatory

m Antenna positions, earth
orientation

m Clocks

m Antenna pointing, gains, voltage
pattern

m Calibrator coordinates, flux
densities, polarization properties
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Planning for good calibration:
absolute calibration

mVLBI: FORGET IT !
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Planning for good calibration:
cross-calibration

m Observe nearby point sources
(predictable visibilities) and transfer
solutions to target observations

m Observe a calibrator of known flux
density

m Polarization observations:

= Observe strong and unpolarized calibrators
= Observe a broad range of parallactic angle
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Radio Frequency
INnterference

= Originated from human beings

m Obscures natural emission Iin spectral line
observations

s Adds to total noise power, making the
amplitude calibration more difficult

m Can correlate between antennas close to each
other

= Mitigation:
m Electronic design in antennas

= Choose interference-free frequencies

m Observe continuum channels in spectral-line modes
to edit bad channels
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Raw correlator output

Raw Correlator Qutput Phases

12 13
TIME (HOURS)

Fringe rates

Before Calibration

Correlation Coefficient
Gorralation Coefficient
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Digital sampling
correction

m The use of 2-bit sampling causes a
bias in the data due to digitization -
can be estimated from the data itself
and corrected

 Amplitude corrections not larger than
5%
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curve correction

Antenna Gain Curves at different wavetengths.
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Atmospheric opacity
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Pulse cal system (1)

Correction of the instrumental
phase shifts: pulse injection
once per microsecond

] g
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Pulse cal system (il
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Correction of
parallactic angle
® Include the effect of the rotation of

the receiver w.r.t. the sky in the
phases

m Important in geodesy and In
polarization observations
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Editing bad data (1)

No data are better than bad data

= Automatic flagging of data: antenna off
source, problems at synthesizers, low
elevation

m Examining data: most of the causes of
poor data are antenna-based

= Weather
= Bad playback
= RFI

= Bad automatic flagging
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Editing bad data (i

Raw data, not edited Edited data

PLot file version 12 created 31-MAY-1995 18:04:09
Ampltude and Phase vs Time for BW12X.MULTI.1

PLot file version 13 created 31-MAY-1995 18:06:33
Ampltude and Phase vs Time for BWI12X.MULTI.1
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Editing bad data (i)

m Steps:

m Check the performance of the antennas
In the logs, and edit consequently

» Removal of outliers and inconsistent
data

= Editing during the calibration, If
Insuperable difficulties appear

= Editing during the imaging process, to
Improve the map quality
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Bandpass calibration

Plot file version 28 created 01-JUN-1995 15:25:23
BWI2XMULTL1
Freq= 8.4145 GHz, Bw= 4.000 MHz

Cobesied mih CLF “Self-calibration” In
' each channel

Plot file version 29 created 01-JUN-1995 15:26:55
BWIZX.MULTIL1

Freg = 8.4145GHz, Bw= 4,000 MHz
Calibrated with CL # 6 and BP # 1 (BP mode 1)

2
Lower frame:Ampl J¥ Top frame:Phas deg
Vector averaged cross-power spectrum  IF mamber: 1

Timerange: 01/03:05:00 to 01A3:15:00
Baseline: LA (4)-PT (8) Stokes: RR

Needed for spectral _
line analysis o sty To e

Vector averaged cross-power spectrum  IF number: 1

Timerange: 01/03:05:00 to 01/03:15:00
Baseline: LA (4)-PT (8) Stokes: RR
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Plot file version 32 created 02-JUN-1995 13:29:38
Amplitude vs UV dist for BWI2X.MULTIL1 Source:0923+392
Ants * -* StokesRR IF# 1 Chn# 2
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Fringe fitting (1)

m Raw correlator data have phase slopes in
time (fringe rate) and frequency (delay)

m Fringe fit is self calibration with first
derivatives in time and frequency

x When Is done:

= Fit one scan to align channels: manual phase
cal

= Used to allow averaging in frequency and time,
with corrections for smearing, getting a higher
SNR for astronomical purposes (imaging)

= Used to get slopes in frequency for geodetic
purposes (the delay is the main observable)
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Fringe fitting (i)

m Steps In the process:

= FFT in 2D to estimate rates and delays
to the reference antenna — search
windows can be restricted

= Least squares fit to the phases starting
at the FFT estimate
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Fringe fitting (i)

m Baseline-based fringe fitting
= Not affected by poor source model
= Used In geodesy

m Global fringe fitting
= One phase, rate, and delay per antenna
= All data used: high SNR
= Source model allows improvement
= Used for imaging
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Fringe fitting (iv)

High SNR case
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Fringe fitting (v)

Low SNR case
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Calibration step by step
O,

Phase slopes across

each IF , offsets Plot file version 2 created 30-SEP-2002 16:25:24
between IFs Eﬂ% 8.000 MH_Calibrated with cwdpau appll
?uu ] L | { | . \

++++
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g at
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ot 4

+
¥
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Calibration step by step
(i

Plct file version 2 created 30-SEP-2002 16:28:14
BRO77TE.MSORT.1
Freq = 15.3315 GHz, Bw = 8.000 MH Calibrated with CL # 3 but no bandpass appll
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E R .
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ampIItUdeS ii"l .I\/ 0.8 |(| ] I (I ? |{| ? |(| ? |5{| ? L1 |{| |}_ |E{| 1
) vy 0 510150 51015 51015 51015 51015 510185 51018 51015
Channels

Lower fram Top frame: Phas deg

Scalar averajed et~ power spectrum  Easeline: FD {02) - LA (05)
Timerange: 00/02:35:00 to 00/02:41:00

Amplitude calibration
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Calibration step by step

No offsets between
different IFs

Phase calibration

07/02/2009

Plot file version 4 created 30-SEP-2002 16:30:04
BEROTFE.MSORT.1

Freq = 153345 GHZ, Bw = 8.000 MH Calibrated with Mpﬂss appll

)

| IF1{LLY| IF2{LL}| IF3{LL}| IF4{LL}| IF 5LL}| | IF T{LLY|
| | | | | | | | | | | | | | | | | | | | | | | |
0 510150 51015 51015 51015 51015 51015 51015 51015
Channels
Lower frame: Ampl Jy Top frame: Phas deg
Scalar averaged croas-power spectrum Easeline: FD {02) - LA (05)
Timerange: 00/02:35:00 to 00/02:41:00

Introduced
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Calibration step by step
(1v)

Plot file version 5 created 30-SEP-2002 16:30:55
BEROTFE.MSORT.1

Freq = 15.33 : =5. a ut no bandpass appll

—

Solved for phase 200
(equals zero) and
delay (no slope).

faiad Fr[F LT B il 2 S ELE

The data can be
averaged in time
and frequency.

READY TO MAP! ;:3 -IF 1(LL -IF E(LL}-IFS{LL}“IF:I(LL}“ IF S{LL}“ IF T{LL}_:

a 5 1U15ﬂ 5 1ﬂ15:| 51u1m 51ﬂ15:| 51u1m 51ﬂ15:| 51U 153 51ﬂ15
Channels

Lower frame: Ampl Jy Top frame: Phas deg

Scalar averaged croas-power spectrum Easeline: FD {02) - LA (05)

Timerange: 00/02:35:00 to 00/02:41:00

Fringe-fitting done
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Polarization calibration

m Determination of the instrumental polarization:
leakage factors at the antenna feeds, the so-
called D-terms

m After fringe-fitting and self-calibration, use of a
source model following the method described In
Leppanen et al., AJ, 110, 2479 (1995) [multi-component
similarity approximation]

s Absolute Electric Vector Position Angle (EVPA)
calibration needed afterwards, comparing with a
known, stable case (3C286, 3C138)
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Astrometric/geodetic
observations

m Use of the group delay using widely spread
bandwidths

m Generally observing 2.3 and 8.4 GHz to
remove lonosphere

m Solutions of data analysis:
= Antenna and source positions

= Earth orientation parameters (UT1-UTC, nutation,
etc.)

= Atmosphere and clock behavior
m Accuracies better than 1 cm and 1 mas

m Geodesy: International VLBI Service
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Credits

Moellenbrock, 2002, Socorro Summer School,
talk on Calibration and Data Editing
(http://www.nrao.edu)

Walker, 2002, Socorro Summer School, talk
on VLBI (http://www.nrao.edu)

Synthesis Imaging in Radio Astronomy II, by
Taylor et al, ASP 180 (1999)

Very Long Baseline Interferometry, Techniques
and Applications, by Felly & Spencer, NATO
ASI Series 283 (1989)

Interferometry and Synthesis in Radio
Astronomy, by Thompson et al., John Wiley &
Sons, NY (1986)
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