VLBI Data Analysis

Calibration, Edition and Fringe Fitting

Eduardo Ros^{1,2} & Matthias Kadler^{3,4}

1: U. Valencia, 2: MPIfR, 3: Dr. Remeis Obs. Bamberg, 4: ECAP

July 2nd, 2009 Multiwavelength Summer School

Calibrating and editing

- CALIBRATION: Removal of instrumental factors in the measurements
- Every physicist has to calibrate the instrument of measure being used
 EDITION: *no data are better than bad data*

Calibration - why? (i)

- Synthesis radio telescopes are not perfect (surface accuracy, receiver noise, etc.)
- Technical devices with different processes involved (frequency conversion, digital sampling, etc.)
 Control during the observation occasionally fails: calibration or edition of the data

Calibration - why? (ii)

 Scheduling and observing errors do occur (wrong source positions, slewing times different than expected, etc.)

 Atmospheric and space weather (ionosphere) conditions are not ideal
 RFI

Calibration methods

Direct calibration:

- Some parameters of the observations are known (geometry of the interferometer)
- VLA: amplitude stability over 1%
- VLBI: impossible
- Calibrator sources in the sky:
 - Calibration observing well-known objects
 - Monitoring of phase: phase-referencing
 - Monitoring of gain: determination of amplitudes
- Self-calibration

Instrumental effects, stable with time

- Antenna position coordinates: geodetic values (ITRF)
- Antenna pointing corrections: pointing model elaborated at the telescopes

Zero-point setting of instrumental delays: known by GPS values or another methods

Stable effects during the observation

- Dry component of the atmospheric delay: *meteorological values*
- Antenna gain as a function of elevation: gain curves determined at the telescopes
- Shadowing of antennas by close ones: at close elements (VLA), known at the scheduling

Variable effects during the observation

- Variations at the system temperatures: direct measurements and recording of the data
- Phase variations in the local oscillator: to be tracked
- Wet component of the atmospheric delay: determined with meteorological measurements, WVR

What do we want and what do we get

We want to obtain the visibility function, which has to be inverted to obtain the brightness distribution:

$$V(u,v) = \int I_{v}(x,y) e^{-i2\pi(ux+vy)} dx dy$$

We obtain the correlation of the electric field (voltage) sampled at pairs of telescopes (baselines *ij*)

$$V_{ij}(t) = \left\langle x_i(t) e^{i\phi_i^{comp}} \cdot x_j^*(t) e^{-i\phi_j^{comp}} \right\rangle_{t}$$

The measured signal

The net signal delivered by antenna *i*, *x_i(t)*, is a combination of the desired signal, *s_i(t,x,y)*, corrupted by a factor *J_i(t,x,y)* and integrated over the sky, and noise, *n_i(t)*:

$$x_i(t) = \int J_i(t, x, y) s_i(t, x, y) dx dy + n_i(t)$$
$$= s'_i(t) + n_i(t)$$

J_i(t,x,y) is the factor to be calibrated, it is antenna-based

Sometimes, the effects contained in this term are irreversible and the data have to be edited

Correlation of signals

The noise doesn't correlate:

$$\begin{aligned} \left\langle x_i \cdot x_j^* \right\rangle &= \left\langle (s_i' + n_i) \cdot (s_j' + n_j)^* \right\rangle \\ &= \left\langle s_i' \cdot s_j'^* \right\rangle + \left\langle s_i' \cdot n_j^* \right\rangle + \left\langle n_i \cdot s_j'^* \right\rangle + \left\langle n_i \cdot n_j^* \right\rangle \\ &= \left\langle s_i' \cdot s_j'^* \right\rangle \\ &= \left\langle \int J_i(t) s_i(t) \, dl dm \cdot \int J_j^*(t) s_j^*(t) \, dl dm \right\rangle \\ &= \left\langle \int J_i(t) J_j^*(t) s_i(t) s_j^*(t) \, dl dm \right\rangle \end{aligned}$$

Even if n_i>> s_i, the correlation isolates the desired signals

Calibration sequence (signal path)

- Faraday rotation
- Tropospheric effects
- Parallactic angle
- Antenna voltage pattern
- Polarization leakage
- Electronic gain
- Bandpass response

Ionospheric Faraday Rotation

The ionosphere is birefringent, and one hand of the circular polarization is delayed wrt the other, introducing a phase shift:

 $\Delta \phi = 0.15 \ \lambda^2 \int B_{\parallel} n_e ds \ \deg$

 λ in cm, $n_e ds$ in 10^{14} cm⁻², B_{\parallel} in G

- Rotates the linear polarization position angle
- Important at long wavelengths, at sunrise or sunset, and at a maximum of solar activity

Example:

$$TEC = \int n_e ds \sim 10^{14} \,\mathrm{cm}^{-2}; B_{\parallel} \sim 1G; \lambda = 20 \,\mathrm{cm} \rightarrow \Delta \phi \sim 60^{\circ}$$

Troposphere

Polarization-independent Amplitude effect: opacity Phase effect: refraction Effect: 2m (7ns) excess path length at zenith compared to vacuum Important at high frequencies, where water vapour absorbs and emits Correction: water vapor radiometer, frequency switching?

Parallactic angle

- Orientation of receiver with respect to the field of view
- Constant for equatorial telescopes
 Variable for alt-az

$$\chi(t) = \arctan\left(\frac{\cos(l)\sin(h(t))}{\sin(l)\cos(\delta) - \cos(l)\sin(\delta)\cos(h(t))}\right)$$

l = latitude, $h(t)$ = hour angle, δ = declination

Rotates the position angle of linearly polarized radiation

Antenna voltage pattern

- Antennas have a direction-dependent gain
- Important for wide-field mapping (region of sky comparable or larger than λ/D
- Important at low frequencies

Polarization leakage

- Orthogonal polarizations are not completely isolated
- Feeds have a value of d of a few percent or less
- Frequency-dependent
- For RCP/LCP systems, the total intensity image is affected as ~ dQ, dU (important only for high dynamic range imaging), and the linear polarization imaging is affected as ~ dI (very important)

Electronic gain (i)

- Includes most of the amplitude and phase effects introduced by the electronics: amplifiers, mixers, quantizers, digitizers
- Dominates all the other effects
- Causes the scaling from engineering to radio astronomical units (Jy)
 Excludes frequency-dependent effects

Electronic gain (ii)

Flux density observed for a given baseline:

$$S_{ij} = A_{ij} b_{\sqrt{\frac{T_{s_i} T_{s_j}}{K_i K_j}}}$$

- A_{ij} is the measured visibility amplitude (raw correlation coefficient)
- Digitization losses: b
- K_i are the antenna sensitivities (K/Jy)
- Tsi are the system temperatures in K

Electronic gain (iii)

It is instructive to express the system temperature in terms of the system equivalent flux density, SEFD:

$$SEFD_i = \frac{T_{s_i}}{K_i}$$

Examples at 5GHz:
 Jodrell Bank, 26m, SEFD=366 Jy
 Effelsberg, 100m, SEFD=39 Jy
 Noto, 32m, SEFD=220 Jy
 VLBA antenna, 25m, SEFD=300 Jy

Electronic gain (iv)

Sensitivity of an interferometer:

$$\Delta S_{ij} = \frac{1}{\eta_s} \sqrt{\frac{SEFD_i \cdot SEFD_j}{2\Delta v \tau_{acc}}}$$

Electronic losses η_s
 Δv is the observing bandwidth
 Accumulation time τ_{acc}

Bandpass response

Frequency-antenna electronics
 The filters used to select the frequency passbands are not square
 Typically normalized

More effects...

- Errors in the geometric and the clock models, affecting the phase: solved by FRINGE-FITTING
- Baseline-based errors not included into antenna-based factors
 - Correlators are designed to prevent that
 - Averaging in time and frequency
 - Correlated noise (RFI)
 - Indistinguishable from source structure effects

Planning for good calibration: values provided by the observatory

- Antenna positions, earth orientation
- Clocks
- Antenna pointing, gains, voltage pattern
- Calibrator coordinates, flux densities, polarization properties

Planning for good calibration: absolute calibration

VLBI: FORGET IT !

Planning for good calibration: cross-calibration

- Observe nearby point sources (predictable visibilities) and transfer solutions to target observations
- Observe a calibrator of known flux density
- Polarization observations:
 - Observe strong and unpolarized calibrators
 - Observe a broad range of parallactic angle

Radio Frequency Interference

- Originated from human beings
- Obscures natural emission in spectral line observations
- Adds to total noise power, making the amplitude calibration more difficult
- Can correlate between antennas close to each other
- Mitigation:
 - Electronic design in antennas
 - Choose interference-free frequencies
 - Observe continuum channels in spectral-line modes to edit bad channels

Raw correlator output

07/02/2009

Eduardo Ros – Multiwavelength School

Graphics by C. Walker

System temperature calibration

Rain and low elevation effects

07/02/2009

Digital sampling correction

The use of 2-bit sampling causes a bias in the data due to digitization can be estimated from the data itself and corrected

Amplitude corrections not larger than 5%

Gain curve correction

VLBA gain curves, dependence of the antenna gain as function of elevation

Eduardo Ros – Multiwavelength School

Image by C. Walker

07/02/2009

Atmospheric opacity

Absorption of the atmosphere

Ta / MEASURED FLUX (All sources, no opacity corrections)

Ta / MEASURED FLUX (All sources, opacity corrected)

Eduardo Ros – Mu

Pulse cal system (i)

Correction of the instrumental phase shifts: pulse injection once per microsecond

Monitoring of data

Pulse-cal tones

Eduardo Ros – Multiwavelength School

Graphics by C. Walker

07/02/2009

Pulse cal system (ii)

Data aligned with pulse-cal

VLA: no phase-cal, phases are not aligned

07/02/2009

Eduardo Ros – Multiwavelength School

Graphics by C. Walker

Ionosphere

Correction of parallactic angle

- Include the effect of the rotation of the receiver w.r.t. the sky in the phases
- Important in geodesy and in polarization observations

Editing bad data (i)

No data are better than bad data

- Automatic flagging of data: antenna off source, problems at synthesizers, low elevation
- Examining data: most of the causes of poor data are antenna-based
 - Weather
 - Bad playback
 - RFI
 - Bad automatic flagging

Editing bad data (ii)

Raw data, not edited

Edited data

39

07/02/2009

Eduardo Ros – Multiwavelength School

Editing bad data (iii)

Steps:

- Check the performance of the antennas in the logs, and edit consequently
- Removal of outliers and inconsistent data
- Editing during the calibration, if insuperable difficulties appear
 Editing during the imaging process, to improve the map quality

Bandpass calibration

Needed for spectral line analysis

"Self-calibration" in each channel

Amplitude check

Visibility amplitude before mapping

Graphics by C. Walker

07/02/2009

Fringe fitting (i)

- Raw correlator data have phase slopes in time (fringe rate) and frequency (delay)
- Fringe fit is self calibration with first derivatives in time and frequency
- When is done:
 - Fit one scan to align channels: manual phase cal

Used to allow averaging in frequency and time, with corrections for smearing, getting a higher SNR for astronomical purposes (imaging)
 Used to get slopes in frequency for geodetic purposes (the delay is the main observable)

Fringe fitting (ii)

Steps in the process:

FFT in 2D to estimate rates and delays to the reference antenna – search windows can be restricted

Least squares fit to the phases starting at the FFT estimate

Fringe fitting (iii)

Baseline-based fringe fitting Not affected by poor source model Used in geodesy Global fringe fitting One phase, rate, and delay per antenna All data used: high SNR Source model allows improvement Used for imaging

Fringe fitting (iv)

High SNR case

Input phase turns

Result of FFT

Frequency

Delay

Fringe fitting (v)

Low SNR case

Input phase turns

Result of FFT

Frequency

07/02/2009

Eduardo Ros – Multiwavelength School

Images by C. Walker & G. Moellenbrock

Calibration step by step (i)

Phase slopes across each IF, offsets between IFs

Uncalibrated amplitudes (correlation coefficients)

Raw odata from the correlator-Multiwavelength School

Calibration step by step (ii)

Plot file version 3 created 30-SEP-2002 16:28:14 BR077E.MSORT.1 Freg \pm 15.3315 GHz, Bw \pm 8.000 MH $\,$ Calibrated with CL # 3 but no bandpass appli 200100 -100 2.0 1.8 1.6 1.4 1.2 1.0 $|\mathbf{F} \mathbf{S}(\mathbf{LL})|| |\mathbf{F} \mathbf{G}(\mathbf{LL})|| |\mathbf{F} \mathbf{7}(\mathbf{LL})||$ IF 1(LLÝ IE 2(LL) IE 3/LL IE 4(LL)0.8 5 10 150 5 10 1 50 5 10 150 5 10 150 5 10 150 5 10 150 51015 - 1 Channels Lower frame: Ampl Jy Top frame: Phas deg Scalar averaged cross power spectrum Baseline: FD (02) - LA (05) Timerange: 00/02:39:00 to 00/02:41:00

amplitudes, in Jy

Amplitude calibration

07/02/2009

Calibrated

Eduardo Ros – Multiwavelength School

Calibration step by step (iii)

No offsets between different IFs

Phase calibration introduced

07/02/2009

Calibration step by step (iv)

Solved for phase (equals zero) and delay (no slope).

The data can be averaged in time and frequency. READY TO MAP!

Fringe-fitting done

07/02/2009

Polarization calibration

- Determination of the instrumental polarization: leakage factors at the antenna feeds, the socalled *D-terms*
- After fringe-fitting and self-calibration, use of a source model following the method described in Leppänen et al., AJ, 110, 2479 (1995) [multi-component similarity approximation]
- Absolute Electric Vector Position Angle (EVPA) calibration needed afterwards, comparing with a known, stable case (3C286, 3C138)

Astrometric/geodetic observations

- Use of the group delay using widely spread bandwidths
- Generally observing 2.3 and 8.4 GHz to remove ionosphere
- Solutions of data analysis:
 - Antenna and source positions
 - Earth orientation parameters (UT1-UTC, nutation, etc.)
 - Atmosphere and clock behavior
 - Accuracies better than 1 cm and 1 mas

Geodesy: International VLBI Service

Credits

- Moellenbrock, 2002, Socorro Summer School, talk on Calibration and Data Editing (http://www.nrao.edu)
- Walker, 2002, Socorro Summer School, talk on VLBI (http://www.nrao.edu)
- Synthesis Imaging in Radio Astronomy II, by Taylor et al, ASP 180 (1999)
- Very Long Baseline Interferometry, Techniques and Applications, by Felly & Spencer, NATO ASI Series 283 (1989)
- Interferometry and Synthesis in Radio Astronomy, by Thompson et al., John Wiley & Sons, NY (1986)